Un gran avance en la tecnología de impresión 3D

Un gran avance en la tecnología de impresión 3D


La NASA y la Universidad Estatal de Ohio han desarrollado una nueva superaleación que es el doble de fuerte, más de 1000 veces más duradera y el doble de resistente a la oxidación que las superaleaciones impresas en 3D de última generación. Este avance podría dar lugar a piezas más resistentes y duraderas para aeronaves y naves espaciales, ya que la aleación de alta temperatura es una excelente candidata para la construcción de piezas aeroespaciales para aplicaciones de alta temperatura, como las que se encuentran dentro de los motores de aeronaves y cohetes, debido a su capacidad para soportar condiciones más duras. condiciones antes de llegar a su punto de ruptura. Crédito: NASA/Jordan Salkin

alloy could be used to build stronger and more durable parts for airplanes and spacecraft.

NASA has demonstrated a breakthrough in 3D printable high-temperature materials that could lead to stronger, more durable parts for airplanes and spacecraft.

A team of innovators from NASA and The Ohio State University detailed the characteristics of the new alloy, GRX-810, in a peer-reviewed paper published in the journal Nature.

“This superalloy has the potential to dramatically improve the strength and toughness of components and parts used in aviation and space exploration,” said Dr. Tim Smith of NASA’s Glenn Research Center in Cleveland, lead author of the Nature paper. Smith and his Glenn colleague Christopher Kantzos invented GRX-810. 

Smith and his team employed time-saving computer modeling, as well as a laser 3D printing process that fused metals together, layer-by-layer, to create the new alloy. They used this process to produce the NASA logo pictured above.

3D Printed Turbine Engine Combusto

This turbine engine combustor (fuel-air mixer) was 3D-printed at NASA Glenn and is one example of a challenging component that can benefit from applying the new GRX-810 alloys. Credit: NASA

GRX-810 is an oxide dispersion strengthened alloy. In other words, tiny particles containing oxygen atoms spread throughout the alloy enhance its strength. Such alloys are excellent candidates to build aerospace parts for high-temperature applications, like those inside aircraft and rocket engines, because they can withstand harsher conditions before reaching their breaking points.

Current state-of-the-art 3D printed superalloys can withstand temperatures up to 2,000 degrees Fahrenheit. Compared to those, GRX-810 is twice as strong, over 1,000 times more durable, and twice as resistant to oxidation.

“This new alloy is a major achievement,” said Dale Hopkins, deputy project manager of NASA’s Transformational Tools and Technologies project. “In the very near future, it may well be one of the most successful technology patents NASA Glenn has ever produced.”

A team of contributors from Glenn, NASA’s Ames Research Center in California’s Silicon Valley, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and The Ohio State University co-authored the Nature paper.  

GRX-810 was developed under NASA’s Transformational Tools and Technologies project, with support from the agency’s Game Changing Development Program.

Reference: “A 3D printable alloy designed for extreme environments” by Timothy M. Smith, Christopher A. Kantzos, Nikolai A. Zarkevich, Bryan J. Harder, Milan Heczko, Paul R. Gradl, Aaron C. Thompson, Michael J. Mills, Timothy P. Gabb and John W. Lawson, 19 April 2023, Nature.
DOI: 10.1038/s41586-023-05893-0

Loading

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *