Nuevos sensores avanzados podrían transformar prótesis y miembros robóticos

Nuevos sensores avanzados podrían transformar prótesis y miembros robóticos


Nuevos sensores robóticos podrían ayudar a mejorar las prótesis.

Un proyecto pionero para desarrollar sensores de presión avanzados para su uso en sistemas robóticos podría transformar las prótesis y las extremidades robóticas.

El innovador proyecto de investigación aspira a desarrollar sensores que brinden capacidades mejoradas a los robots, ayudando a mejorar sus habilidades motoras y destreza, mediante el uso de sensores de presión de alta precisión que brindan retroalimentación háptica y toque distribuido. Está dirigido por la Universidad del Oeste de Escocia (UWS), Integrated Graphene Ltd, y cuenta con el apoyo de la Sociedad Escocesa de Investigación en Ingeniería (SRPe) y el Programa de Doctorado en la Industria del Instituto Nacional de Fabricación de Escocia (NMIS) en Fabricación Avanzada.

El profesor Des Gibson, director del Instituto de Películas Delgadas, Sensores e Imágenes de UWS e investigador principal del proyecto, dijo: “En los últimos años, los avances en la industria de la robótica han sido notables, sin embargo, debido a la falta de habilidades sensoriales, Los sistemas robóticos a menudo no pueden realizar ciertas tareas con facilidad. Para que los robots alcancen su máximo potencial, se necesitan sensores de presión precisos capaces de proporcionar una mayor capacidad táctil.

“Nuestra colaboración con Integrated Graphene Ltd ha llevado al desarrollo de tecnología avanzada de sensores de presión, que podría ayudar a transformar los sistemas robóticos”.

Hecho de 3D[{” attribute=””>graphene foam, which offers unique properties when put under mechanical stress, the sensors use a piezoresistive approach. This means that when the material is put under pressure it dynamically changes its electric resistance, easily detecting and adapting to the range of pressure required, from light to heavy.

Marco Caffio, co-founder and Chief Scientific Officer at Integrated Graphene said: “Gii, our novel 3D graphene foam, has the capability to mimic the sensitivity and feedback of human touch, which could have a transformative impact on how robotics can be used for a whole range of real-world applications from surgery to precision manufacturing.

“We know the unique property of Gii makes it suitable for use in other applications like disease diagnostics and energy storage, so we’re always very excited to be able to demonstrate its flexibility in projects like this one.”

Dr. Carlos Garcia Nunez, School of Computing Engineering and Physical Sciences at UWS added: “Within robotics and wearable electronics the use of pressure sensors is a vital element, to provide either an information input system, or to give robotic systems human-like motor skills. An advanced material like 3D graphene foam offers excellent potential for use in such applications, due to its outstanding electrical, mechanical, and chemical properties.

“Our work shines a light on the significant potential for this technology to revolutionize the robotics industry with dynamic pressure sensors.”

Claire Ordoyno, Interim Director of SRPe, stated: “The SRPe – NMIS Industrial Doctorate Programme brings together groundbreaking academic research with industry partners to drive forward innovation in engineering. These collaborative PhD projects not only enhance the Scottish engineering research landscape, but produce innovation focussed, industry-ready PhD graduates to feed the talent pipeline.”

The next stage of the project – funded by UWS, Integrated Graphene Ltd, SRPe and NMIS – will look to further increase sensitivity of the sensors, before developing for wider use in robotic systems.

Reference: “Ultra-Thin Graphene Foam Based Flexible Piezoresistive Pressure Sensors for Robotics” by Connor I. Douglas, Carlos Garcia Nuñez, Marco Caffio and Des Gibson, June 2022, Key Engineering Materials.
DOI: 10.4028/p-oy94hj

Deja un comentario

Tu dirección de correo electrónico no será publicada.